了解学会Python 代码优化原则
第一个基本原则是不要过早优化。很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”。因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。 第二个基本原则是权衡优化的代价。优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。 第三个原则是不要优化那些无关紧要的部分。如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。 1. 避免全局变量# 不推荐写法。代码耗时:26.8秒 import math size = 10000 for x in range(size): for y in range(size): z = math.sqrt(x) + math.sqrt(y) 许多程序员刚开始会用 Python 语言写一些简单的脚本,当编写脚本时,通常习惯了直接将其写为全局变量,例如上面的代码。但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。 # 推荐写法。代码耗时:20.6秒 import math def main(): # 定义到函数中,以减少全部变量使用 size = 10000 for x in range(size): for y in range(size): z = math.sqrt(x) + math.sqrt(y) main() 2. 避免.2.1 避免模块和函数属性访问 # 不推荐写法。代码耗时:14.5秒 import math def computeSqrt(size: int): result = [] for i in range(size): result.append(math.sqrt(i)) return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main() 每次使用.(属性访问操作符时)会触发特定的方法,如__getattribute__()和__getattr__(),这些方法会进行字典操作,因此会带来额外的时间开销。通过from import语句,可以消除属性访问。 # 第一次优化写法。代码耗时:10.9秒 from math import sqrt def computeSqrt(size: int): result = [] for i in range(size): result.append(sqrt(i)) # 避免math.sqrt的使用 return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main() 在第 1 节中我们讲到,局部变量的查找会比全局变量更快,因此对于频繁访问的变量sqrt,通过将其改为局部变量可以加速运行。 # 第二次优化写法。代码耗时:9.9秒 import math def computeSqrt(size: int): result = [] sqrt = math.sqrt # 赋值给局部变量 for i in range(size): result.append(sqrt(i)) # 避免math.sqrt的使用 return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main() 除了math.sqrt外,computeSqrt函数中还有.的存在,那就是调用list的append方法。通过将该方法赋值给一个局部变量,可以彻底消除computeSqrt函数中for循环内部的.使用。 # 推荐写法。代码耗时:7.9秒 import math def computeSqrt(size: int): result = [] append = result.append sqrt = math.sqrt # 赋值给局部变量 for i in range(size): append(sqrt(i)) # 避免 result.append 和 math.sqrt 的使用 return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |