加入收藏 | 设为首页 | 会员中心 | 我要投稿 晋中站长网 (https://www.0354zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 模式 > 正文

数据科学思维 :打造健康数据驱动组织的 6 条原则

发布时间:2019-06-11 12:05:06 所属栏目:模式 来源:数据分析
导读:副标题#e# 要点 大多数组织都难以解锁数据科学以优化其操作流程,让数据科学家、分析师和业务团队采用一致的语言:不同的团队和数据科学流程常常是形成摩擦的根源。 健康的数据科学组织框架是一系列方法论、技术和资源的组合,它们将帮助你的组织 (从业务理

在运行实验时,列出要做哪些事情:数据收集、清理、注释;阅读新的数据科学主题,尝试新的算法或框架。所有这些活动都会对你未来项目的成功有所助益。建议可参考这几个数据科学网站:数据科学中心、KDnuggets、Revolution Analytics

原则 5:统一组织的数据科学愿景

从开始数据科学过程的第一天起,数据科学团队就应该与业务伙伴进行交互。数据科学家和业务伙伴不经常接触解决方案。业务伙伴希望远离技术细节,数据科学家也是想远离业务。然而,为了理解并行模型的实现以构建模型,他们之间保持持续交互是非常重要的。大多数组织都难以解锁数据科学以优化其操作流程,让数据科学家、分析师和业务团队采用一致的语言:不同的团队和数据科学流程常常是形成摩擦的根源。这种摩擦定义了新的数据科学铁三角,它基于的是数据科学、IT 运营和业务运营的协调配合。

为了与客户共同完成这项任务,我们实施了以下步骤:

要求 C 级别高管的支持采纳这一愿景,并将其推动至其他不同业务部分:哪里有清晰的目标, 愿景和支持,就在哪里先试点,最初的成功或胜利,会刺激大家进一步试验和探索,这经常会导致多米诺效应,让大家产生积极的转变。 营造一种实验文化:即使有了明确的目标,但通常仅凭这一点也不会带来成功的业务转型。在许多组织中,一个重要的障碍是员工没有足够的权力来实现变革。向员工充分授权有助于让员工参与进来,并让他们积极地为共同的目标做出贡献。 让每个人都参与到沟通中来:达成共识会增强绩效表现。如果数据科学家在没有其他人参与的情况下孤立地工作,组织将缺乏共同承担的愿景、价值观和共同的目标。跨多个团队的组织的共同愿景和共同目标,能带来协作的提升。

原则 6:让人类参与其中

成为一家数据驱动型公司,更多的是一种文化转变,而不仅仅是数字化:因此,任何数据科学解决方案的结果都应让人类参与评估,这很重要。人类 - 数据科学的团队合作将会得到比任何一个单独的团队更好的结果。

例如,在我们的客户案例中,我们结合数据科学与人类经验,帮助他们构建、部署和维护了一个人员部署推荐解决方案,为新项目建议最优的人员组合和具有对口经验和专业知识的人员,这常常会直接带来经济价值。在我们部署了解决方案之后,我们的客户决定与几个项目团队进行试点。他们还创建了一个数据科学家和业务专家的 v-Team,目的与机器学习解决方案并行开展工作,从两个试点团队使用 Azure 机器学习解决方案前后比较机器学习在项目完成时间、收入、员工、客户满意度等方面得出的结果。这种由一组数据和业务专家进行的线下评估对项目本身非常有益,这主要有两个原因:

验证了该机器学习解决方案能够为每个项目提高约 4% 到 5% 的贡献边际; 该 v-Team 能够测试这个解决方案并创建一个可靠的即时反馈机制,使他们能够不断地监控结果并改进最终的解决方案。

在这个试点项目之后,客户成功地将我们的解决方案集成到了他们的内部项目管理系统中。

在开始这种数据驱动的文化转变时,公司应该牢记以下几点准则:

并肩工作:业界领先的公司越来越认识到,当技术能够助力人类,而不是取代人类时,它们才是最有效的。理解数据科学和人类为不同类型的工作和任务带来的独特能力将是至关重要的,因为这样重点就从自动化转向了对工作的重新设计。 对人类接触的认知:重点是要记住,即使高度电脑化的工作不得不保持在面向服务的层面,并由像数据科学家和开发人员这些角色来解释公司的成功,但仍需要创造力、同理心、沟通能力和解决复杂问题等必要的人类技能。 投资于劳动力的发展:对劳动力的发展、学习和职业模式予以重新关注也很重要,要不吝为其注入创造力。也许最关键的是对做有意义的工作的需求——尽管他们与智能机器有了新的合作,但人类将热切地拥抱这些工作。

在数据科学需要额外的目前昂贵得令人望而却步的基础设施(例如巨大的知识图谱),以在每个领域中提供上下文和替代人类经验的情况下,人类组件将特别重要。

结论

通过在数据分析过程中应用健康数据科学组织框架中的这六个原则,组织可以针对他们的业务做出更好的决策,他们的选择将得到可靠的数据收集和分析的支持。

我们的客户能够实现一个成功的人员部署推荐解决方案,该方案为新项目推荐最优的员工组合和具有对口经验和专业知识的个人员工。通过将员工经验与项目需求结合起来,我们帮助项目经理更好更快地进行人员分配。

通过实践,数据科学过程将变得更快、更准确,这意味着组织将做出更好、更明智的决策,从而最有效地运营。

以下是一些可能会用到的附加资源,可帮助你学习如何培养健康的数据科学思维,建立一个成功的数据驱动组织:

团队数据科学过程文档(Team Data Science Process Documentation) 团队数据科学处理 GitHub 库(Team Data Science Process GitHub Repo) 数据架构指南(Data Architecture Guide) Azure 的笔记本(Azure Notebooks) 数据科学虚拟机(Data Science Virtual Machine ) Azure 机器学习文档(Azure Machine Learning Documentation ) 微软 Azure 数据科学博客(Microsoft Azure Data Science Blog)

作者简介:Francesca Lazzeri 博士(推特:@frlazzeri)是微软云计算倡导团队的高级机器学习科学家,也是大数据技术创新和基于机器学习的解决方案在现实问题中的应用方面的专家。她是《时间序列预测:机器学习方法》(O 'Reilly Media, 2019) 一书的作者,她定期在美国和欧洲的大学教授应用分析和机器学习课程。在加入微软之前,她是哈佛商学院商业经济学研究员,她在那里的技术和运营管理部门进行统计和计量分析。她还是麻省理工学院博士和博士后的数据科学导师,并在学术和行业会议上发表主题演说和专题演讲,在会上,她分享了她对人工智能、机器学习和编码的知识和激情。

(编辑:晋中站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读