神操作!只需5行代码,就能做出一个图像识别AI
for eachPrediction, eachProbability in zip(predictions, probabilities): print(eachPrediction , " : " , eachProbability)
查看下面的示例图像和结果。 waiter : 99.99997615814209 chef : 1.568847380895022e-05 judge : 1.0255866556008186e-05 是不是很简单!现在,让我们解释上面产生此预测结果的代码。 上面的第一和第二行代码导入ImageAI的CustomImagePrediction类,以使用经过训练的模型和python os类来预测和识别图像。第三行代码创建一个变量,该变量保存对包含python文件(在本示例中为FirstCustomImageRecognition.py)和你自己下载或自己训练的ResNet模型文件的路径的引用。 在上面的代码中,我们在第四行中创建了ImagePrediction()类的实例,然后通过在第五行中调用.setModelTypeAsResNet()将预测对象的模型类型设置为ResNet,然后设置模型路径预测对象到人工智能模型文件(idenprof_061–0.7933.h5)的路径,我们将其复制到第六行的项目文件夹文件夹中。 在第七行中,我们设置复制到第七行中的文件夹的JSON文件的路径,并在第八十行中加载模型。最后,我们对复制到文件夹中的图像进行预测,然后将结果打印到命令行界面。 到目前为止,你已经学习了如何使用ImageAI轻松训练自己的人工智能模型,该模型可以预测图像中的任何类型的对象或对象集。 当然,除了以上教程,笔者顺便提一下钛灵AIX,一款集计算机视觉与智能语音交互两大核心功能为一体的迷你人工智能硬件。基于 Intel Movidius AI加速芯片的强大算力支持与内置的语音 SDK 和 API,钛灵 AIX可以兼容AI模型资源平台——Model Play。Model Play面向全球开发者,内置多样化AI模型,更是支持谷歌 Edge TPU边缘人工智能计算芯片以及更多AI硬件,可以帮助开发者加速专业级开发。 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |