巧妙设计多级缓存,为数据库减负
有很明显问题是若短时间内被频繁访问多次,比如访问异常或者循环没有控制住,而后很长时间未使用,则此数据会因为频率高而被错误的保留下来,没有被淘汰。尤其对于新来的数据,由于其起始的次数是1,所以即便被正常使用也会因为比不过老的数据而被淘汰。所以维基百科说纯粹的LFU算法不经常单独使用而是组合在其他策略中使用。 5.缓存使用的一些常见问题 Q1:那么应该选择用本地缓存(local cache)还是集中式缓存(Cache cluster)呢? A1:首先看数据量,看缓存更新的成本,如果整体缓存数据量不是很大,而且变化的不频繁,那么建议本地缓存。 Q2:怎么批量更新一批缓存数据? A2:依次从数据库读取,然后批量写入缓存,批量更新,设置版本过期key或者主动删除。 Q3:如果不知道有哪些key怎么定期删除? A3:拿Redis来说keys * 太损耗性能,不推荐。可以指定一个集合,把所有的key都存到这个集合里,然后对整个集合进行删除,这样便能完全清理了。 Q4:一个key包含的集合很大,Redis无法做到内存空间上的均匀Shard? A4:1、可以简单的设置key过期,这样就要允许有缓存不命中的情况;2、给key设置版本,比如为两天后的当前时间,然后读取缓存时用时间判断一下是否需要重新加载缓存,作为版本过期的策略。 【编辑推荐】
点赞 0 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |