副标题[/!--empirenews.page--]

用这个简单的工具生成带有多表的大型数据库,让你更好地用 SQL 研究数据科学。
在研究数据科学的过程中,最麻烦的往往不是算法或者技术,而是如何获取到一批原始数据。尽管网上有很多真实优质的数据集可以用于机器学习,然而在学习 SQL 时却不是如此。
对于数据科学来说,熟悉 SQL 的重要性不亚于了解 Python 或 R 编程。如果想收集诸如姓名、年龄、信用卡信息、地址这些信息用于机器学习任务,在 Kaggle 上查找专门的数据集比使用足够大的真实数据库要容易得多。
如果有一个简单的工具或库来帮助你生成一个大型数据库,表里还存放着大量你需要的数据,岂不美哉?
不仅仅是数据科学的入门者,即使是经验丰富的软件测试人员也会需要这样一个简单的工具,只需编写几行代码,就可以通过随机(但是是假随机)生成任意数量但有意义的数据集。
因此,我要推荐这个名为 pydbgen 的轻量级 Python 库。在后文中,我会简要说明这个库的相关内容,你也可以阅读它的文档详细了解更多信息。
pydbgen 是什么
pydbgen 是一个轻量的纯 Python 库,它可以用于生成随机但有意义的数据记录(包括姓名、地址、信用卡号、日期、时间、公司名称、职位、车牌号等等),存放在 Pandas Dataframe 对象中,并保存到 SQLite 数据库或 Excel 文件。
如何安装 pydbgen
目前 1.0.5 版本的 pydbgen 托管在 PyPI(Python 包索引存储库)上,并且对 Faker 有依赖关系。安装 pydbgen 只需要执行命令:
pip install pydbgen
已经在 Python 3.6 环境下测试安装成功,但在 Python 2 环境下无法正常安装。
如何使用 pydbgen
在使用 pydbgen 之前,首先要初始化 pydb 对象。
import pydbgenfrom pydbgen import pydbgenmyDB=pydbgen.pydb()
随后就可以调用 pydb 对象公开的各种内部函数了。可以按照下面的例子,输出随机的美国城市和车牌号码:
myDB.city_real()>> 'Otterville'for _ in range(10): print(myDB.license_plate())>> 8NVX937 6YZH485 XBY-564 SCG-2185 XMR-158 6OZZ231 CJN-850 SBL-4272 TPY-658 SZL-0934
另外,如果你输入的是 city() 而不是 city_real(),返回的将会是虚构的城市名。
print(myDB.gen_data_series(num=8,data_type='city'))>>New MichelleRobinboroughLeeburyKaylatownHamiltonfortLake ChristopherHannahstadWest Adamborough
生成随机的 Pandas Dataframe
你可以指定生成数据的数量和种类,但需要注意的是,返回结果均为字符串或文本类型。
testdf=myDB.gen_dataframe(5,['name','city','phone','date'])testdf
最终产生的 Dataframe 类似下图所示。

生成数据库表
你也可以指定生成数据的数量和种类,而返回结果是数据库中的文本或者变长字符串类型。在生成过程中,你可以指定对应的数据库文件名和表名。
myDB.gen_table(db_file='Testdb.DB',table_name='People',-
fields=['name','city','street_address','email'])
上面的例子种生成了一个能被 MySQL 和 SQLite 支持的 .db 文件。下图则显示了这个文件中的数据表在 SQLite 可视化客户端中打开的画面。

生成 Excel 文件
和上面的其它示例类似,下面的代码可以生成一个具有随机数据的 Excel 文件。值得一提的是,通过将 phone_simple 参数设为 False ,可以生成较长较复杂的电话号码。如果你想要提高自己在数据提取方面的能力,不妨尝试一下这个功能。
myDB.gen_excel(num=20,fields=['name','phone','time','country'],phone_simple=False,filename='TestExcel.xlsx')
(编辑:晋中站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|