100行Python代码,轻松搞定神经网络
发布时间:2019-05-06 18:21:59 所属栏目:优化 来源:eisenjulian 编译:周家乐、钱天培 用tensor
导读:大数据文摘出品 来源:eisenjulian 编译:周家乐、钱天培 用tensorflow,pytorch这类深度学习库来写一个神经网络早就不稀奇了。 可是,你知道怎么用python和numpy来优雅地搭一个神经网络嘛? 现如今,有多种深度学习框架可供选择,他们带有自动微分、基于图
接下来看看另一个常用的层,激活层。它们属于点式(pointwise)非线性函数。点式函数的 Jacobian矩阵是对角矩阵, 这意味着当乘以梯度时, 它是逐点相乘的。
计算Sigmoid函数的梯度略微有一点难度,而它也是逐点计算的:
当我们按序构建很多层后,可以遍历它们并先后得到每一层的输出,我们可以把backward函数存在一个列表内,并在计算反向传播时使用,这样就可以直接得到相对于输入层的损失梯度。就是这么神奇:
(编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |