Java还在纠结原码、补码和反码?其实So Easy
记住在2.2中说的一句话,向右移动的话,最右边超过的部分直接去掉,左边空出来的位置填上和符号位相同的数!说起来很抽象,举个栗子:-6的补码是1111 1010,往右移动一个位置的补码就是1111 1101,是负的,变成原码就知道对应的十进制是多少了。。。。 2.5.无符号右移(>>>) 本来都说了正负数的左移和右移应该就说完了,但是呢,还有一个比较特殊的运算方式,就是无符号右移(注意只有无符号右移,没有无符号左移啊!),简单的来说就是不管正数负数,只要是右移的话,最右边超过的部分直接丢掉,左边空出来的位置都添0就ok了! 好像也没什么可说的,简单举个栗子吧!-6的补码是1111 1010,无符号右移一位的补码就是0111 1101,正的,原码和补码一样,所以对应的十进制是应该是125,然而实际情况有点问题,代码如下:
打印的结果为什么是-3呢?,这里就有一个小小的细节操作,在进行右移操作的时候,首先会将该byte类型的数变成int类型的,对int类型的变原码,然后变补码,移位操作之后,取后8位变为byte类型,然后变原码,最后转十进制。。。。是不是贼麻烦!还是以上面的-6为栗子,-6要进行无符号右移,所以-6的原码应该是32位的
3.简单总结一下 由于我们是用一个byte类型的为例,这也是为了方便举例子,不然用个int类型的,随便一个数写出原码都是一大串,看着都眼花。。。其实byte类型的移位运算弄清楚了,其他的类型一样的,看了这么多,不知道大家有没有总结出来一点规律,我就说说我的理解吧! 首先,我们要明确当前的数是一个什么类型,进行移位操作之后会不会超出这个类型的范围,如果超出了,我们是不能直接得出乘以2或者除以2这种简单的结论的,会得出一个意想不到的数字; 然后,如果移位操作之后没有超过当前类型的范围,那么就大胆的说左移一位是乘以2,右移一位是除以2向下取整吧!!! 再然后,对于一个正数,左移一位就是最高位去掉,最低位添0;右移一位最高位添加和符号位一样的数,最低位去掉;对于负数而言,也是一样的,就不多说了 最后,就是无符号右移,这里要注意先要变成int类型的二进制原码,变补码,然后进行移位操作,截取后8位为我们需要的byte类型的补码,再变原码,最后就是变成十进制的了。。。 4."或"、"与"、"非"、"异或" 请注意“或”、“与”、“非”和java中的||、&&、!别弄混淆了,java中的这几个是用来进行逻辑判断的,而我们这里的“或”“与”“异或”这几个是用来计算二进制的,完全没有什么相关,虽然写法有点类似,“或”用一根竖线表示|,与用一个&表示,非用~表示,"异或"用^表示,下面就简单说说他们的作用: 或:在二进制中,两个操作数进行或操作,只要有一个为1,结果就为1,否则就为0;举个例子,-6|3,首先将各自都变为补码,也就是变为(1111 1011)|(0000 0011),根据下图,最后计算的补码为1111 1011,变为原码为1000 0101,对应十进制的-5,所以-6|3的结果就是-5!很简单吧,现在应该知道操作数是什么了吧! ![]()
与:两个操作数同时为1,结果才是1,否则为0; 异或:看这个名字就知道了,两个操作数不同结果就是1,否则为0; 非:就是对自己取反(符号位也要取反),用法如下,因为-6的补码是1111 1010,取反之后的补码0000 0101,对应十进制的5
5.简单练习 如果把上面的都看懂了,理解了那么下面这个就很容易了; 直接说一下这个方法的用处,就是你随便输入一个int类型的数,它都会给你返回一个2的次幂数,比如1,2,4,8,16.32.64等这种数(1等于2的零次幂,也是2的次幂数)
这个方法其实很容易,就是将传进去的int类型的cap首先减一,赋值给n,然后n进行5次无符号右移操作,每次右移之后都和n进行"或"操作,最后判断n如果小于零,就返回1,否则就返回n+1 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |