一文揭秘边缘计算参考架构2.0的实践与思考
副标题[/!--empirenews.page--]
随着物联网和5G网络的发展, “边缘计算”逐渐成为许多大佬的关注点。边缘计算作为新的计算范式,在靠近设备端的运算上,展现出了实时处理与高效节能的优势。那么,业界如何定义边缘计算呢?它目前的市场状况与未来的发展前景又如何呢? 2018 年 5 月 18-19 日,由 51CTO 主办的全球软件与运维技术峰会在北京召开。在“IOT开发技术解析”分论坛上,来自华为、及边缘计算产业联盟的技术架构主席史扬,给大家带来了《边缘计算参考架构2.0实践与思考》。 本文将按照如下三个部分展开: 为什么需要边缘计算(WHY) 华为如何在边缘计算领域持续发力(HOW) 边缘计算参考架构2.0实践与思考 为什么需要边缘计算 行业数字化的转型是当下比较时髦的概念。其本质是:以数字化产生数据,网络化实现价值的流动,通过智能化来创造经济和社会价值。 行业数字化的迭代发展是从互联网公司开始,逐步进入互联网金融公司(FinTech),而近两年则进入了实体行业的智能制造等场景中。 纵观任何一个企业,其运营无非涉及到:人、财、物,应用和环境,而说到底都是源于数据。我们通过对数据的感知、到对数据含义的认知、从而达到对数据进行预测。 例如:我们通过关联分析,来对互联网用户做“画像”,进而预测他的购物习惯。凭借着越来越廉价的云计算服务、ERP和CRM等软件的协助,我们能够从历史看未来,不断优化用户体验,进而做出各种决策。 如今,传统行业需要通过物联网,来获知其核心资产(如发电机)的运行状况和资产利用率,进而打通从云端到边缘计算。 因此,数字化转型的核心问题是:缔造“数据+模型=服务”的模式,实现如下四个转变: 物理世界与数字世界从割裂转变为协作融合。 运营决策从模糊的经验化转变为基于数字化、模型化的科学化。 流程从割裂转变为基于数据的全流程协同。 行业单边创新转变为基于产业生态的多边创新。 如今我们的数字化转型技术正变得越来越成熟,门槛也越来越低。例如:在汉诺威工业展上受到追捧的数字孪生,就是通过模型化的方式,使用ICT的技术,在数字世界里构建一个虚拟世界。可见,数字技术其实是可以将物理世界的潜能释放出来的。 当然,物理世界与云数字世界的联接也存在各种问题,包括:十毫秒的时延约束,无人驾驶场景中的数据猛增和带宽消耗,人员与企业的数据安全与隐私,以及边缘侧物理设备与云端的联接的不可靠性等。 因此,我们需要通过智能分布化,,来实现物的自主化,从而进一步实现:物与物之间的协助、物与本地系统的协作、物与人的协作(即人机交互)、以及物和云的交互协作。那么在整个过程中,我们都需要通过一种数据和支持的共享,来实现全面的协作化。 不过,我们所用到的边缘计算、云服务、乃至Docker和K8等技术,其实归根到底都属于分布式系统。 而对于分布式系统架构来说,除了我们所熟悉的,具有可扩展性和性能优势之外,也带来了如上图所示的各种挑战。 其中包括:部署、学习曲线陡峭、理解整体架构逻辑、以及各种开发成本、维护成本和运营成本等方面。 同时,那些在工业上被广泛使用到的各种传统软件,如ERP、MES、CAD等,由于具有较强的行业定制化的特点(MES尤为典型),导致了它们既不赚钱,又难以适应灵活的需求变化。 因此,我们需要将原有的工业服务平台从层次化变为扁平化,把它们的业务逻辑打碎成多个模块。我们通过内部封装,以一种组态编排的方式来解决工业现场的多样化问题。 在业界上,我们通过K8之类的技术来构建出一种“高内聚、松耦合”的分布式服务架构,并且使用微服务来为架构提供包括:服务发现、控制总线、业务编排、架构运维在内的一系列基础服务。 伴随着微服务化,工业界本身的控制架构也产生了分布式化。例如:在工业现场的PLC控制装备上,实现了可交互的分布式控制逻辑。 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |