Linux驱动实践 怎样编写 GPIO 设备的驱动程序?
发布时间:2021-12-02 04:00:57 所属栏目:Linux 来源:互联网
导读:在前几篇文章中,我们一块讨论了:在 Linux 系统中,编写字符设备驱动程序的基本框架,主要是从代码流程和 API 函数这两方面触发。 这篇文章,我们就以此为基础,写一个有实际应用功能的驱动程序: 在驱动程序中,初始化 GPIO 设备,自动创建设备节点; 在应用
在前几篇文章中,我们一块讨论了:在 Linux 系统中,编写字符设备驱动程序的基本框架,主要是从代码流程和 API 函数这两方面触发。 这篇文章,我们就以此为基础,写一个有实际应用功能的驱动程序: 在驱动程序中,初始化 GPIO 设备,自动创建设备节点; 在应用程序中,打开 GPIO 设备,并发送控制指令设置 GPIO 口的状态; 示例程序目标 编写一个驱动程序模块:mygpio.ko。 当这个驱动模块被加载的时候,在系统中创建一个 mygpio 类设备,并且在 /dev 目录下,创建 4 个设备节点: /dev/mygpio0 /dev/mygpio1 /dev/mygpio2 /dev/mygpio3 因为我们现在是在 x86 平台上来模拟 GPIO 的控制操作,并没有实际的 GPIO 硬件设备。 因此,在驱动代码中,与硬件相关部分的代码,使用宏 MYGPIO_HW_ENABLE 控制起来,并且在其中使用printk输出打印信息来体现硬件的操作。 在应用程序中,可以分别打开以上这 4 个 GPIO 设备,并且通过发送控制指令,来设置 GPIO 的状态。 编写驱动程序 以下所有操作的工作目录,都是与上一篇文章相同的,即:~/tmp/linux-4.15/drivers/。 创建驱动目录和驱动程序 $ cd linux-4.15/drivers/ $ mkdir mygpio_driver $ cd mygpio_driver $ touch mygpio.c mygpio.c 文件的内容如下(不需要手敲,文末有代码下载链接): #include <linux/module.h> #include <linux/kernel.h> #include <linux/ctype.h> #include <linux/device.h> #include <linux/cdev.h> // GPIO 硬件相关宏定义 #define MYGPIO_HW_ENABLE // 设备名称 #define MYGPIO_NAME "mygpio" // 一共有4个 GPIO 口 #define MYGPIO_NUMBER 4 // 设备类 static struct class *gpio_class; // 用来保存设备 struct cdev gpio_cdev[MYGPIO_NUMBER]; // 用来保存设备号 int gpio_major = 0; int gpio_minor = 0; #ifdef MYGPIO_HW_ENABLE // 硬件初始化函数,在驱动程序被加载的时候(gpio_driver_init)被调用 static void gpio_hw_init(int gpio) { printk("gpio_hw_init is called: %d. n", gpio); } // 硬件释放 static void gpio_hw_release(int gpio) { printk("gpio_hw_release is called: %d. n", gpio); } // 设置硬件GPIO的状态,在控制GPIO的时候(gpio_ioctl)被调研 static void gpio_hw_set(unsigned long gpio_no, unsigned int val) { printk("gpio_hw_set is called. gpio_no = %ld, val = %d. n", gpio_no, val); } #endif // 当应用程序打开设备的时候被调用 static int gpio_open(struct inode *inode, struct file *file) { printk("gpio_open is called. n"); return 0; } // 当应用程序控制GPIO的时候被调用 static long gpio_ioctl(struct file* file, unsigned int val, unsigned long gpio_no) { printk("gpio_ioctl is called. n"); // 检查设置的状态值是否合法 if (0 != val && 1 != val) { printk("val is NOT valid! n"); return 0; } // 检查设备范围是否合法 if (gpio_no >= MYGPIO_NUMBER) { printk("dev_no is invalid! n"); return 0; } printk("set GPIO: %ld to %d. n", gpio_no, val); #ifdef MYGPIO_HW_ENABLE // 操作 GPIO 硬件 gpio_hw_set(gpio_no, val); #endif return 0; } static const struct file_operations gpio_ops={ .owner = THIS_MODULE, .open = gpio_open, .unlocked_ioctl = gpio_ioctl }; static int __init gpio_driver_init(void) { int i, devno; dev_t num_dev; printk("gpio_driver_init is called. n"); // 动态申请设备号(严谨点的话,应该检查函数返回值) alloc_chrdev_region(&num_dev, gpio_minor, MYGPIO_NUMBER, MYGPIO_NAME); // 获取主设备号 gpio_major = MAJOR(num_dev); printk("gpio_major = %d. n", gpio_major); // 创建设备类 gpio_class = class_create(THIS_MODULE, MYGPIO_NAME); // 创建设备节点 for (i = 0; i < MYGPIO_NUMBER; ++i) { // 设备号 devno = MKDEV(gpio_major, gpio_minor + i); // 初始化 cdev 结构 cdev_init(&gpio_cdev[i], &gpio_ops); // 注册字符设备 cdev_add(&gpio_cdev[i], devno, 1); // 创建设备节点 device_create(gpio_class, NULL, devno, NULL, MYGPIO_NAME"%d", i); } #ifdef MYGPIO_HW_ENABLE // 初始化 GPIO 硬件 for (i = 0; i < MYGPIO_NUMBER; ++i) { gpio_hw_init(i); } #endif return 0; } static void __exit gpio_driver_exit(void) { int i; printk("gpio_driver_exit is called. n"); // 删除设备和设备节点 for (i = 0; i < MYGPIO_NUMBER; ++i) { cdev_del(&gpio_cdev[i]); device_destroy(gpio_class, MKDEV(gpio_major, gpio_minor + i)); } // 释放设备类 class_destroy(gpio_class); #ifdef MYGPIO_HW_ENABLE // 释放 GPIO 硬件 for (i = 0; i < MYGPIO_NUMBER; ++i) { gpio_hw_release(i); } #endif // 注销设备号 unregister_chrdev_region(MKDEV(gpio_major, gpio_minor), MYGPIO_NUMBER); } MODULE_LICENSE("GPL"); module_init(gpio_driver_init); module_exit(gpio_driver_exit); 相对于前几篇文章来说,上面的代码稍微有一点点复杂,主要是多了宏定义 MYGPIO_HW_ENABLE 控制部分的代码。 比如:在这个宏定义控制下的三个与硬件相关的函数: gpio_hw_init() gpio_hw_release() gpio_hw_set() 就是与GPIO硬件的初始化、释放、状态设置相关的操作。 代码中的注释已经比较完善了,结合前几篇文章中的函数说明,还是比较容易理解的。 从代码中可以看出:驱动程序使用 alloc_chrdev_region 函数,来动态注册设备号,并且利用了 Linux 应用层中的 udev 服务,自动在 /dev 目录下创建了设备节点。 另外还有一点:在上面示例代码中,对设备的操作函数只实现了 open 和 ioctl 这两个函数,这是根据实际的使用场景来决定的。 这个示例中,只演示了如何控制 GPIO 的状态。 你也可以稍微补充一下,增加一个read函数,来读取某个GPIO口的状态。 控制 GPIO 设备,使用 write 或者 ioctl 函数都可以达到目的,只是 ioctl 更灵活一些。 创建 Makefile 文件 $ touch Makefile 内容如下: ifneq ($(KERNELRELEASE),) obj-m := mygpio.o else KERNELDIR ?= /lib/modules/$(shell uname -r)/build PWD := $(shell pwd) default: $(MAKE) -C $(KERNELDIR) M=$(PWD) modules clean: $(MAKE) -C $(KERNEL_PATH) M=$(PWD) clean endif 编译驱动模块 $ make 得到驱动程序: mygpio.ko 。 加载驱动模块 在加载驱动模块之前,先来检查一下系统中,几个与驱动设备相关的地方。 先看一下 /dev 目录下,目前还没有设备节点( /dev/mygpio[0-3] )。 $ ls -l /dev/mygpio* ls: cannot access '/dev/mygpio*': No such file or directory 再来查看一下 /proc/devices 目录下,也没有 mygpio 设备的设备号。 $ cat /proc/devices 为了方便查看打印信息,把dmesg输出信息清理一下: $ sudo dmesg -c 现在来加载驱动模块,执行如下指令: $ sudo insmod mygpio.ko 当驱动程序被加载的时候,通过 module_init( ) 注册的函数 gpio_driver_init() 将会被执行,那么其中的打印信息就会输出。 还是通过 dmesg 指令来查看驱动模块的打印信息: $ dmesg 可以看到:操作系统为这个设备分配的主设备号是 244,并且也打印了GPIO硬件的初始化函数的调用信息。 此时,驱动模块已经被加载了! 来查看一下 /proc/devices 目录下显示的设备号: $ cat /proc/devices 设备已经注册了,主设备号是: 244 。 设备节点 由于在驱动程序的初始化函数中,使用 cdev_add 和 device_create 这两个函数,自动创建设备节点。 所以,此时我们在 /dev 目录下,就可以看到下面这4个设备节点: 现在,设备的驱动程序已经加载了,设备节点也被创建好了,应用程序就可以来控制 GPIO 硬件设备了。 应用程序 应用程序仍然放在 ~/tmp/App/ 目录下。 $ mkdir ~/tmp/App/app_mygpio $ cd ~/tmp/App/app_mygpio $ touch app_mygpio.c 文件内容如下: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <assert.h> #include <fcntl.h> #include <sys/ioctl.h> #define MY_GPIO_NUMBER 4 // 4个设备节点 char gpio_name[MY_GPIO_NUMBER][16] = { "/dev/mygpio0", "/dev/mygpio1", "/dev/mygpio2", "/dev/mygpio3" }; int main(int argc, char *argv[]) { int fd, gpio_no, val; // 参数个数检查 if (3 != argc) { printf("Usage: ./app_gpio gpio_no value n"); return -1; } gpio_no = atoi(argv[1]); val = atoi(argv[2]); // 参数合法性检查 assert(gpio_no < MY_GPIO_NUMBER); assert(0 == val || 1 == val); // 打开 GPIO 设备 if((fd = open(gpio_name[gpio_no], O_RDWR | O_NDELAY)) < 0){ printf("%s: open failed! n", gpio_name[gpio_no]); return -1; } printf("%s: open success! n", gpio_name[gpio_no]); // 控制 GPIO 设备状态 ioctl(fd, val, gpio_no); // 关闭设备 close(fd); } 以上代码也不需要过多解释,只要注意参数的顺序即可。 接下来就是编译和测试了: $ gcc app_mygpio.c -o app_mygpio 执行应用程序的时候,需要携带2个参数:GPIO 设备编号(0 ~ 3),设置的状态值(0 或者 1)。 这里设置一下/dev/mygpio0这个设备,状态设置为1: $ sudo ./app_mygpio 0 1 [sudo] password for xxx: <输入用户密码> /dev/mygpio0: open success! 如何确认/dev/mygpio0这个GPIO的状态确实被设置为1了呢?当然是看 dmesg 指令的打印信息: $ dmesg 通过以上打印信息可以看到:确实执行了【设置 mygpio0 的状态为 1】的动作。 再继续测试一下:设置 mygpio0 的状态为 0: $ sudo ./app_mygpio 0 0 当然了,设置其他几个GPIO口的状态,都是可以正确执行的! 卸载驱动模块 卸载指令: $ sudo rmmod mygpio ![]() (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐
热点阅读