30. 改善Apriori算法适应性和效率的主要的改进方法有:
- 基于数据分割(Partition)的方法:基本原理是“在一个划分中的支持度小于最小支持度的k-项集不可能是全局频繁的”。
- 基于散列(Hash)的方法:基本原理是“在一个hash桶内支持度小于最小支持度的k-项集不可能是全局频繁的”。
- 基于采样(Sampling)的方法:基本原理是“通过采样技术,评估被采样的子集中,并依次来估计k-项集的全局频度”。
- 其他:如,动态删除没有用的事务:“不包含任何Lk的事务对未来的扫描结果不会产生影响,因而可以删除”。
31. 数据分类的两个步骤是什么?
a建立一个模型,描述预定的数据类集或概念集
数据元组也称作样本、实例或对象。
为建立模型而被分析的数据元组形成训练数据集。
训练数据集中的单个元组称作训练样本,由于提供了每个训练样本的类标号,因此也称作有指导的学习。
通过分析训练数据集来构造分类模型,可用分类规则、决策树或数学公式等形式提供。
b使用模型进行分类
首先评估模型(分类法)的预测准确率。
如果认为模型的准确率可以接受,就可以用它对类标号未知的数据元组或对象进行分类。
32. web访问信息挖掘的特点:
- Web访问数据容量大、分布广、内涵丰富和形态多样
- 一个中等大小的网站每天可以记载几兆的用户访问信息。
- 广泛分布于世界各处。
- 访问信息形态多样。
- 访问信息具有丰富的内涵。
- Web访问数据包含决策可用的信息
- 每个用户的访问特点可以被用来识别该用户和网站访问的特性。
- 同一类用户的访问,代表同一类用户的个性。
- 一段时期的访问数据代表了群体用户的行为和群体用户的共性。
- Web访问信息数据是网站的设计者和访问者进行沟通的桥梁。
- Web访问信息数据是开展数据挖掘研究的良好的对象。
- Web访问信息挖掘对象的特点
- 访问事务的元素是Web页面,事务元素之间存在着丰富的结构信息。
- 访问事务的元素代表的是每个访问者的顺序关系,事务元素之间存在着丰富的顺序信息。
- 每个页面的内容可以被抽象出不同的概念,访问顺序和访问量部分决定概念。
- 用户对页面存在不同的访问时长,访问长代表了用户的访问兴趣。
33. web页面内文本信息的挖掘:
挖掘的目标是对页面进行摘要和分类。
- 页面摘要:对每一个页面应用传统的文本摘要方法可以得到相应的摘要信息。
- 页面分类:分类器输入的是一个Web页面集(训练集),再根据页面文本信息内容进行监督学习,然后就可以把学成的分类器用于分类每一个新输入的页面。
{在文本学习中常用的方法是TFIDF向量表示法,它是一种文档的词集(Bag-of-Words)表示法,所有的词从文档中抽取出来,而不考虑词间的次序和文本的结构。这种构造二维表的方法是:
- 每一列为一个词,列集(特征集)为辞典中的所有有区分价值的词,所以整个列集可能有几十万列之多。
- 每一行存储一个页面内词的信息,这时,该页面中的所有词对应到列集(特征集)上。列集中的每一个列(词),如果在该页面中不出现,则其值为0;如果出现k次,那么其值就为k;页面中的词如果不出现在列集上,可以被放弃。这种方法可以表征出页面中词的频度。
对中文页面来说,还需先分词然后再进行以上两步处理。
这样构造的二维表表示的是Web页面集合的词的统计信息,最终就可以采用Naive Bayesian方法或k-Nearest Neighbor等方法进行分类挖掘。 【编辑推荐】 - 大数据挖掘机器学习人工智能的维恩图战争
- 一篇文章让你知道什么是大数据挖掘技术
- 人工智能、机器学习、数据挖掘以及数据分析有什么联系?
- 如何用Python进行大数据挖掘和分析?快速入门路径图!
- 大数据与数据挖掘的相对绝对关系
【责任编辑:未丽燕 TEL:(010)68476606】
点赞 0 (编辑:晋中站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|