Apache Flink在唯品会的实践
对应Flink集群所依赖的HDFS等其他配置,则通过创建configmap来管理和维护。
后续计划 当前实时系统,机器学习平台要处理的数据分布在各种数据存储组件中,如Kafka、Redis、Tair和HDFS等,如何方便高效的访问,处理,共享这些数据是一个很大的挑战,对于当前的数据访问和解析常常需要耗费很多的精力,主要的痛点包括:
UDM(统一数据管理系统)包括Location Manager, Schema Metastore以及Client Proxy等模块,主要的功能包括:
UDM的整体架构如下图所示: UDM的使用者包括实时,机器学习以及离线平台中数据的生产者和使用者。在使用Sql API或Table API的时候,首先完成Schema的注册,之后使用Sql进行开发,降低了开发代码量。 在Flink中,使用UDMExternalCatalog来打通Flink计算框架和UDM之间的桥梁,通过实现ExternalCatalog的各个接口,以及实现各自数据源的TableSourceFactory,完成Schema和接入管控等各项功能。 关于作者:王新春目前在唯品会负责实时平台相关内容,主要包括实时计算框架和提供实时基础数据,以及机器学习平台的工作。之前在美团点评,也是负责大数据平台工作。他已经在大数据实时处理方向积累了丰富的工作经验。 【编辑推荐】
点赞 0 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |