干货 :送你12个关于数据科学学习的关键提示(附链接)
副标题[/!--empirenews.page--]
小结: 数据科学家需要强大的数学和编码能力,但沟通能力和其它软技能也是走向成功不可缺少的基本功。 根据Glassdoor在美国区的统计,“数据科学家”排名为2019年最诱人的工作。平均基础工资为$108k,工作满意度为4.3–5★,加上被预测有大量空缺,这个结果一点都不令人吃惊。 问题是,一个人该如何修炼才能走上正轨并获得胜任这份工作的资格? 为了找到答案,我们总结了大量文章里的建议,很多可以归纳为编码与数学上的硬技能(hard skills)。但强大的计算能力并不是全部。一名优秀的数据科学家仍需要和相关业务人员进行有效沟通,这里便需要一些软技能(soft skills)。 铸造你的教育地基:3个要点 Drace Zhan作为 NYC Data Science Academy 的数据科学家,强调了教育基础的必要性,包括编码基础和数学能力:
R/Python + SQL。如果你没有编码能力,那你就需要大量的网络等其它领域的力量来补充这个缺陷。我见到过一些数据科学家,有的数学能力比较薄弱,或者对相关领域欠缺经验,但他们总有很强的编码能力。Python是很理想,R正在变得有点落后,最好两样武器都带上。SQL对于数据分析师来说同样极其重要。
强大的数学能力。对一些常用的理论有着较好的理解:generalized linear models(广义线性模型),decision tree(决策树),K-means(聚类分析)和statistical tests(假设检验)。这好过手握大量模型甚至专业模型如递归神经网络(RNN),却仅仅是浅尝辄止。
这些都是需要培养的核心技能,尽管一些专家还加入了其它东西。例如,一份 KDnuggests 清单包含了编码成分,Zhan在此基础上还加入了一些其他有用的东西,包括Hadoop平台,Apache Spark,数据可视化,非结构化数据,机器学习和AI。
但如果我们从一份Kaggle调研中寻求线索,关于“那些在实际生活中被使用的最普遍的工具”,我们会有不同的发现。下面这张图是名列前15的硬技能。 Python,R和SQL排在前三,第四名是 Jupyter notebooks,接下来是 TensorFlow,Amazon Web Services,Unix shell,Tableau,C/C++,NoSQL,MATLAB/Octave和Java,都排在Hadoop和Spark前面。颇让人意外的是,Microsoft’s Excel Data Mining也被列进来了。
在KDnuggests清单中也包括了关于正规教育的建议。大多数据科学家都拥有高学历,46%是博士,88%的人拥有至少硕士学位。他们的本科学位通常是相关领域。大约1/3是数学和统计学,这也是最受欢迎的职业轨迹。接下来最受欢迎的是计算机科学学位,占有19%,工程学16%。当然专门针对数据科学的技术工具通常不会设在大学课程中,但是可以通过专门的训练营或在线课程习得。 课程之外:2个要点 Hank Yun是威尔康奈尔医学院肺科的一名助理研究员,同时也是NYC数据科学学院的学生。他建议有抱负的数据科学家围绕他们将要从事的工作进行计划,并找到一位导师。
他说:“不要犯我曾经犯过的错误。那时我对自己说,我知道数据科学,因为我参加了课程并获得了证书。”这确实是个不错的开始,但当你开始学的时候,脑海中要有一个计划。然后在该领域中找到一名导师,并立刻开始一个令你充满激情的项目。 当你还是个新手,你不知道你不知道什么。所以如果有个人指导你前行,告诉你,什么是对于现在的你最重要的,什么不是,这将很有帮助。别把时间扔在学习那些最后根本无法施展的东西! 知道从你的工具包里取出哪样工具:保持领先的要点 由于数据科学工具的排名不尽相同,有人可能会困惑,到底该把精力集中在哪些上面。Celeste Fralick是McAfee软件安全公司的首席数据科学家。他在CIO article上强调了这个问题:“一名数据科学家需要处在调查曲线的前端,但别忘了去明白,什么技术该什么时候用。” 这句话意思是,别被新鲜与性感的外表蛊惑,而实际问题需要更多工作。意识到对于生态系统的计算成本,可解释性,延迟,带宽,和其它系统边界条件,还有客户的到期时间,它本身就能帮助数据科学家知道,使用什么技术最合适。
基本软技能:另外6个要点 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |