7个已经为预测分析做好准备的项目
Martens博士将物联网、预测分析、机器学习和Dynamics 365结合起来,以更多地了解浏览其店铺的顾客人口统计特征和购买模式。然后,销售人员可以使用这些信息提出建议,甚至可以据此使用商店的自定义图表来重新排列产品的显示位置。 6.质量保证 预测分析是QA的理想选择,因为无论是测试物理产品还是DevOps,QA都是在通过风险管理来避免缺陷、问题和错误。您可以根据趋势确定模式并预测潜在的风险,并使用预测分析来减少周期时间和成本,其方法是针对最有可能发生缺陷的地方来进行测试,Sogeti UK的副首席执行官兼首席运营官Darren Coupland表示。 “首席信息官应该使用预测分析,以及人工智能和认知解决方案,来真正了解他们整体运营的质量,并基于得到的洞察力来做出明智的决策。更进一步的,首席信息官们应该考虑结合其他数据源,如PPM项目组合管理工具,SCM源代码管理工具和其他的操作工具,以预测项目的成功交付,并提供有关变更整体业务的风险信息,”Coupland说。 7.除了商业智能 如果你想让业务团队在使用更熟悉的可视化和分析工具的同时,还能自由地使用预测分析,并且仍然可以进行集中监督,那么微软Power BI即将发布的新的无代码人工智能工具可能就是您正在寻找的。 Power BI已经能够进行简单的预测分析,比如预测时间序列数据的未来模式,并可以使用滑块来调节置信水平和预期季节性趋势的强度。目前,您只需要在Azure Machine Learning Studio等工具中构建更复杂的模型,并使用R脚本从SQL Azure中提取数据并将其发送到机器学习模型当中,然后将分数提取到Power BI里面。通过新的无代码连接,业务分析人员就能够在Azure Machine Learning Studio中选择和培训一个模型,并将其应用于Power BI数据,而无需离开Power BI界面。您的数据科学团队还可以使用Azure机器学习工具来创建和培训模型,以便在业务用户可以访问它们时自动显示在Power BI当中。 【编辑推荐】
点赞 0 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |