可以看到代码里首先会执行job生成代码
- graph.generateJobs(time)
-
- 具体代码块儿
-
- def generateJobs(time: Time): Seq[Job] = {
- logDebug("Generating jobs for time " + time)
- val jobs = this.synchronized {
- outputStreams.flatMap { outputStream =>
- val jobOption = outputStream.generateJob(time)
- jobOption.foreach(_.setCallSite(outputStream.creationSite))
- jobOption
- }
- }
- logDebug("Generated " + jobs.length + " jobs for time " + time)
- jobs
- }
每个输出流都会生成一个job,输出流就类似于foreachrdd,print这些。其实内部都是ForEachDStream。所以生成的是一个job集合。
然后就会将job集合提交到线程池里去执行,这些都是在driver端完成的哦。
- jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
-
- 具体h函数内容
- def submitJobSet(jobSet: JobSet) {
- if (jobSet.jobs.isEmpty) {
- logInfo("No jobs added for time " + jobSet.time)
- } else {
- listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
- jobSets.put(jobSet.time, jobSet)
- jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
- logInfo("Added jobs for time " + jobSet.time)
- }
- }
其实就是遍历生成的job集合,然后提交到线程池jobExecutor内部执行。这个也是在driver端的哦。
jobExecutor就是一个固定线程数的线程池,默认是1个线程。
- private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
- private val jobExecutor =
- ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
需要的话可以配置spark.streaming.concurrentJobs来同时提交执行多个job。
那么这种情况下,job就可以并行执行了吗?
显然不是的!
还要修改一下调度模式为Fair,详细的配置可以参考:
http://spark.apache.org/docs/2.3.3/job-scheduling.html#scheduling-within-an-application
简单的均分的话只需要
- conf.set("spark.scheduler.mode", "FAIR")
然后,同时运行的job就会均分所有executor提供的资源。
这就是整个job生成的整个过程了哦。
因为Spark Streaming的任务存在Fair模式下并发的情况,所以需要在使用单例模式生成broadcast的时候要注意声明同步。 (编辑:晋中站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|