Python,Numpy,Pandas…数据科学家必备排序技巧
副标题[/!--empirenews.page--]
对数据进行分类整理是数据科学家和数据工程师的基础工作。Python会提供许多内置库,优化排序选项。有些库甚至可以同时在GPU上运行。令人惊奇的是,一些排序方法并没有使用之前所述的算法类型,其他方法的执行效果也不如预期。 选择使用哪种库和哪类排序算法着实难办,因为算法的执行变化很快。本文将具体展开讲解,提供一些帮助记忆算法的技巧,分享测速的结果。 分好类的茶 开始排序吧! 更新于2019年7月17日:速度测试结果现在包括PyTorch和TensorFlow的GPU执行。TensorFlow还包括tensorflow==2.0.0-beta1和tensorflow-gpu==2.0.0-beta1下的CPU结果。令人感到惊奇的发现是:PyTorch GPU变亮的速度更快,TensorFlow GPU比TensorFlow CPU速度更慢。 有许多不同的基本排序算法。有些比其他执行速度更快、占用内存更小。有些适合处理大数据,还有些可以更好地对特定序列数据进行排排序。可参见下表了解许多常用算法的时间和空间复杂性。 图片来自 http://bigocheatsheet.com/ 了解基础的算法并不能解决大多数数据科学问题。事实上,过早的优化处理说不定什么时候就会被视为错误源泉。不过需要重复排序大量数据时,知道使用哪个库和哪些关键字参数会十分有用。以下是一个备忘表。 Google表格可在此处获取 多年来,许多库的排序算法都发生了变化。用于本文分析的软件版本如下。
让我们从基础开始吧! Python (vanilla版) Python包含两个内置排序法。
sort()应该更快,因为已到位。神奇的是这不是下面测试中的发现。就地排序更危险,因为会改变原始数据。 香草味冰激凌 说到vanilla版Python,本文呈现的默认排序顺序都是升序—从小到大。大多数排序方法采用关键字参数,将顺序切换为降序。对大脑来说很不幸,因为每个库的参数名称都不同。 要将vanilla Python中排序方式更改为降序,通过reverse = True. key可以作为关键字参数来传递,从而创建自己的排序标准。例如,sort(key = len)将按照每个列表项的长度排序。 Vanilla Python中唯一使用的排序算法是Timsort。Timsort会根据要排序的数据特征选择排序方法。举个例子,如果排短列表,就采用插入排序。 Timsort以及Vanilla Python的其他算法都很稳定。这意味着如果有多个相同值,这些数据在排序后仍维持原始顺序。 想要记住sort()与sorted()不同,就记着sorted比sort单词长,并且因复制需要排序时间会更长。虽然下面的结果与传统观念相悖,但助记符仍然起作用。 NumPy Numpy是用于科学计算的Python基础库。与vanilla Python一样,有两种执行方式,一种是变异数组,另一种是数据的复制。
以下是可选参数。
现在,人们使用的排序算法与根据名字联想的略有不同。通过kind = quicksort意味着排序实际是从introsort算法开始的。 若[它]没有明显进展,则会切换成堆排序算法。执行该操作最坏的情况就是产生快速排序O(n * log(n))。Stable会自动为正在排序的数据类型选择最稳定的排序算法。目前依据数据类型,它与合并排序一起映射到tim排序或基数排序中。API前向兼容性目前抑制了选择执行的能力,并且是不同数据类型的硬连线。添加Timsort是为了更好地处理已完成或几乎排好序的数据。对于随机数据,timsort在处理方式上几乎与mergesort相同。现在timsort用于稳定排序,而在没有其他选择的情况下,quicksort仍为默认排序...'mergesort'和'stable'会映射到整数数据类型的基数排序。 来自Numpy文档 -(部分内容有改动) 其中一点是Numpy提供了比vanilla Python排序算法选项更大的控制范围。第二点是kind关键字值不一定与实际排序类型相对应。最后一点是mergesort和stable值是稳定的,但quicksort和heapsort不是。 Numpy排序是列表中唯一没有用关键字参数来反转排序顺序的操作。幸运的是,这个可快速反转数组顺序:my_arr [:: -1]。 Numpy算法选项在更受欢迎的Pandas中也适用—而且这些功能更容易保持稳定。 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |