大数据分析人工智能:技术内容价值观的辨析
弱人工智能是并不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。但是这仍是目前的主流研究仍然集中于弱人工智能,并取得了显著进步,如语音识别、图像处理和物体分割、机器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。 强人工智能是真正能思维的智能机器,并且认为这样的机器是有知觉的和 自我意识的,这类机器可分为类人与非类人两大类。从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、 具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能” 一般来说,在我们认为强人工智能的时代已经来临,只是尚未流行起来,但这时候,却还有一些有意思的观点,他们持反对的声音,认为人工不智能或者说是人工智障。 他们认为当我们在开车的时候,大脑在飞速的处理各种信息:交通信号、标志物、路面的井盖、积水;看到马路中央有一只狗在过马路时,我们会踩刹车;看到中央有一只鸟,我们会判断鸟会快速飞走,不用减速;如果是塑料袋,我们可以直接压过去;如果是大石头,我们就需要避让。这些都是我们通过经验的累积以及生活常识构成的。但是,人工智能却做不到这些。 目前人们所研究的人工智能是“狭义”人工智能。“真正的”人工智能需要能够理解食物之间的因果关系,比如警方在路上设置的锥标,哪怕是倒了,或是被压扁了,也要能够被识别出来。但目前的图形识别能力,哪怕是把障碍物换个角度,计算机识别起来都会很困难。而“狭义”人工智能走的是机器学习路线,换句话说,计算机会把路上所有物体(包括够、其他车辆、标志物、行人、塑料袋、石头等)都简单的看做是障碍物,同时计算和预测这些障碍物的移动路线,判断是否会和汽车的路线发生冲突,然后执行相应的动作。 那么问题来了…… 当计算机无法理解物体的时候,也就意味着不可能100%准确预测物体的移动轨迹。比如,马路中央的狗。你很难预测它下一秒的位置,即使它目前正在向前狂奔。如果马路中央是一个孩子呢?同时,让计算机识别路边的交通指示牌也是一件十分困难的事情。当指示牌有破损、遮挡物等等,都会影响计算机的识别。 所以,目前的人工智能都属于“狭义”的人工智能,它的核心是基于大数据进行的学习。但在瞬息万变的现实世界里,由于计算机无法真正理解事物的相互关系,因此并不能处理出现的意外情况。 我们可以将无人驾驶分为五个级别: 辅助性自动驾驶(如自动刹车、保持车道、停靠辅助系统等)满足一定条件下,汽车可以自动驾驶,但需要驾驶员进行实时监控(如特斯拉的自动驾驶技术)满足一定条件下,汽车可以自动驾驶,驾驶员不需要实时监控,但要随时准备好接管驾驶。满足一定条件下,可实现无人看管的自动驾驶。完全实现无人看管的自动驾驶。 就目前来看,我们距离第五个级别的无人驾驶的距离还有非常遥远的一条道路要走,当然这条道路的未来,并没有人会知道是什么样子的。 在我看来,随着技术的发展,人工智能这条道路并非是走不下去的,只是这条道路比较困难,而且并不是说在人工智能完全达到强人工智能的时候才能造福人类,目前人工智能已经用于我们身边的多个领域,并且在不断的帮助我们,我们可以通过人工智能不断的帮助我们完善人工智能,达成一个不断的循环,只是需要很多对数据科学领域感兴趣的人,来不断的完善它们。 希望你看完这篇文章能够有所收获,如果有一些想法,希望可以一起讨论一下,谢谢。 【编辑推荐】
点赞 0 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |