Tableau 157亿收购背后,50页深度报告看清BI的未来
3.4 制造 制造业对BI系统的需求是产业全链条的,从设计、生产、物流、供应链、质量管控到销售等一系列环节都有巨大的BI需求。目前,大部分中大型的制造企业已经建立了比较完善的CRM、ERP、MES、MRP、EAS等基础信息化系统,帮助制造企业收集大量的历史数据。如何利用数据实现精益生产,成为制造业的刚需。 制造业利用生产数据与用户反馈可以有效的改进生产,如设备运维监控、质量监控、库存分析、柔性生产,都需要借助实时的数据采集与反馈。在生物制药领域,通过对生产线超过200个指标的监控,实现生产线的柔性控制,每条生产线可以节省500万到1000万美元的成本。芜湖格力工厂,把MRP和MES的数据导入BI系统,实现实时多维数据分析,提高了30%以上的工作效率。 现代制造企业通过内部与外部的数据,结合敏捷BI,可以实时优化产品方案。美的集团在跟踪产品销售情况时,会根据用户需求、产品特征、客户评价以及用户评价等多个维度挖掘用户需求,从而及时反馈到生产线,实时优化产品方案。 制造业BI应用中的困难主要在于,内外部海量、异构数据的整合与精确、实时分析的实现,而数据采集经过多年发展已经相对成熟。以美的为例,美的从2012年开始投入超过10亿元进行IT治理和全面重构系统,实现了集团级的企业标准和语言。 在实施过程中,其技术人员负责数据分析体系的搭建与技术实施,业务团队的配合负责数据清洗、转换、建模的部分。数据分析系统通过按月迭代的方式,持续释放新的业务价值。 图 13: 美的集团数据应用架构 数据来源:永洪科技&爱分析 目前,美的集团实现了实现从研发、生产、库存、营销、收付全链条的动态可视化,将数据运营的结果展现出来。对于1.5亿美的用户,美的大数据平台实现了用户购买的记录、购买渠道、地域、使用偏好等等信息全部标签化,形成完整的用户画像,实现精准营销。 BI一体化平台通过降低数据应用构建门槛,帮助企业建立数据化运营体系,真正实现数据驱动决策,从而盘活数据资产和底层基础设施,真正发挥数据给制造企业带来的巨大价值。 3.5 互联网 互联网行业与其他传统行业对BI的有明显的不同。互联网公司自身业务通常面临高并发和分布式的特点,又有自己的技术团队,因此像美团、快手体量的互联网公司通常通过开源组件搭建自身的BI平台以满足自身业务的需要。 但对于行业性或者一般规模的互联网企业,仍然乐于采用成熟商业化的BI产品满足自身数据分析与可视化的需要。 图14: 典型互联网BI架构 数据来源:永洪科技&爱分析 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |