深度神经网络可解释性方法汇总,附Tensorflow代码实现
http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.1%20Deconvolution.ipynb 3.2 Backpropagation 相关代码如下: http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.2%20Backpropagation.ipynb 3.3 Guided Backpropagation 相关代码如下: http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.3%20Guided%20Backpropagation.ipynb 3.4 Integrated Gradients 相关代码如下: http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.4%20Integrated%20Gradients.ipynb 3.5 SmoothGrad 相关代码如下: http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.5%20SmoothGrad.ipynb 类激活映射的方法有3种,分别为:Class Activation Map、Grad-CAM、 Grad-CAM++。在MNIST上的代码可以参考: https://github.com/deepmind/mnist-cluttered 每种方法的详细信息如下: 4.1 Class Activation Map 相关代码如下: http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/4.1%20CAM.ipynb 4.2 Grad-CAM 相关代码如下: (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |