实操回顾:如何通过社群运营使项目营收从0增至千万
主要收集3类数据(分析目的):
2)找到影响关键指标的关键行为因素 用户进入社群后,影响转化率的用户行为可能有:发言提问、打开学习课程、学完课程、参与群活动、领取优惠券等。 那么结合时间点,用户的每日课程打开率、学完率、每日发言频次、讲座参与率、领券率都是需要密切关注的数据。 考虑到数据样本量和统计难度,先对小程序课程的打开率、学习率、领券率等进行埋点做定量分析,用户在社群内的发言频次、讲座参与情况等行为做用户标签,做定性判断。 以学习情况为例,学习率对免费得到课程,且仅仅只有3-5天学习时间的用户来说,是否能影响购买决策?影响值有多大,是否足够成为关键因素? 后台能拉取到2020年02月02日开班的这批课程里,有200个班级学员,这些学员的课程学习情况数据如下: 表里有用户基本信息,最后打开时间和课程学习情况。每节课里有4个环节,这里面1、2、3、4是指这个学员学到了这个课程里的第几个环节,0就代表一个环节未学。 这个后台数据是按照课程的学习情况来统计的,没有时间维度。就需要在定义的社群运营时间内,拉出这些学员的学习情况,以及付费情况。做交叉对比。 要了解学习率与付费率的关系,用户的基础信息先不看。 数据处理:定义在时间段内,学习过一个课程环节即视为学习过课程,对原数据进行处理,0为一次未学习,1为学习过至少1个环节。得到一个班级的学习率情况。 放大颗粒度,查看多个班级的学习率和付费率,以班级为单位比对学习率和转化率,有正向关系,但关系度有多大并不能明确。 回到表一,我们拉取过去1个月1万个体验课用户的学习情况进行取值。 可以和BI同学协作把数据放入相应模型寻找规律,找到聚合的分类方式。 3节体验课一共12个学习环节,20%的用户完成了1-3个环节学习,付费率为55%,其次是12%的用户完成4-8个环节学习,付费率为75%;更少的8%的用户学习9个环节以上,他们的付费率为80%。如果用户一节课都未学,付费率为6%。 40%学习用户贡献了94%的付费,可以明确用户学习与付费的相关性质。学习4个环节以上的用户,付费率比3个环节内的高,但因为4-8的用户占总数比更小,所以当下运营策略的重点将放在引导用户产生至少一次课程学习。 其次,我们看到比较特殊的数据是,用户学习情况并没有按课程节数,而是1-3、4-8这样区分。结合实际业务情况,课程第4个环节是学生跟读输出环节,大量学习用户在跟读环节流失。 根据运营反馈,流失的原因可能有:
这里产生的几个疑问可做进一步调研,这些原因,也将放在下一步优化范围内。 现在已经知道了学习率的重要性,接下来希望能进一步分析出哪些因素影响学习率。 同样的方法:
如果无法立马取值,定量分析,那运营怎么办呢? 运营也可以采用定性方法来做初步验证和判断。 我们想知道自己这些用户在哪一天更愿意打开课程,那就增加让用户主动分享学习时间、学习成果的分享环节。 通过打卡激励、作业评分等方法来获得反馈。这时候就能发现,用户在加入社群的第一天学习打卡的人数最多,第二学习人数最少,最后一天又会增加。相应的提高学习率的策略就可以是第一天做新手引导,第二天做留存活动,最后一天给予学习奖励等。 以上仅以学习率举例,其他影响因素也可以同类方式分析,最终找出关键行为。 三、搭建用户生命周期管理模型社群用户有明显的从加入社群,参与学习到离开社群的随时间推进的过程,故以用户生命周期模型来搭建社群用户运营体系。 在社群MVP时,我们已经能总结出一些可能影响社群转付费的行为有咨询提问、学习课程、参与讲座、领券行为等。 如同上一节分析用户的学习行为与付费的相关度一样,在运营过程中可以通过更具体的用户数据收集和分析来逐渐明确用户定义。 1. 通过用户行为数据的分析,明确用户定义(编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |