滴滴为啥值3600亿?看它的数据中台就知道了
我们现在每天可以产生 600 多个分析的小模板,来自于各个业务方向,复盘、实验、测试,大家可以想到背后什么,每一个一线业务同学,不管是产品还是运营,都在用数据驱动它做任何改进的事情,滴滴的创新就这样起来。 第三个模仿做,这里面代表的思想是什么?一切皆代码,很多情况下你要模仿别人做一个东西,你看花花绿绿的东西,你不知道背后的东西是什么,其实是很难模仿的。 我们尽可能在数据分析这一块,把数据背后分析的代码都开放给用户。比如说我看到这样的数据结果,我会让它找到背后分析的代码是什么,我看到这个报表,我会告诉他背后分析的 DSL 是什么。 这样一些高阶的用户基于代码更快速的理解背后的逻辑是什么,进一步模仿可以去做。 这样会让我们很多中低阶的同学,在这块技能不是那么丰富的同学可以做一些偏高阶的工作,降低成本,提升效率。 最后自主化,我们通过对于前面精益数据生产链路,去彻底打通数据从采集、加工、预处理、分析和系统对接再到服务化,我们打通了整个流程环节,任何一个稍微懂一点数据的同学,就能完成从数据的接入,再到数据的处理。 这样不会有很多的数据门槛,不需要一个同学要去做分析的时候,要去做数据探索的时候,需要有相应的工程师同学去配合他,才能完成相应的动作。 基于这样的方法论,我们就去开发数据系统的工具链,这个工具链要达到前面的分级监控、复盘和自动化,要去能够让大家各个层面上方便降门槛去用数据。 在这里面产品设计秉承核心的方法论,第一个数据要越用越好用,要把数据引入到产品设计中驱动产品设计的优化。 第二个目标是让尽可能多的人能够把数据用起来,所以数据工具之间必须去做强打通,让每一个人都能完成数据处理工作,这是产品设计的核心方法论,我们还通过相应的指标体系来去衡量是否在往这个方向去发展。 数据基础设施,还是基于开源的体系来去做。基于这样的方式做了两年,2017 年 4 月份加入到滴滴,第二天就出了很大的故障。 从那个时候开始一直到年底基本上每周两次,每天晚上被短信吵起来很多次,我下面的几十号兄弟每天都得起来好几次。 滴滴数据系统组成 我们有了这套东西我们持续改正之后,从用户价值来讲每个 Q 都会做 NPS 调研,打 8 分、9 分、10 分的人减去打 1 分、2 分的人,打 5、6 分的人我们不认为他满意。 这个是非常苛刻的,很多公司很多产品 NPS 能做到 30% 是不错了,从 2017 年的 4 月份 19% 还诟病比较多的,到最近的一次调研做到 60%。 在相应的数据生产这一块,事故从一年十几次其实是二十次到去年可能只发生了一次。 我们核心的数据产出时间最晚的处理时间已经提前到了 5 点,我们把所有数据采集的生产链路实时化,根据后面的用户需要来选择究竟是实时还是准实时,还是小时,还是按天。 另外,我们创新体系里面有一个衡量的指标,我们的同事每天都在问很多问题,这些代表在思考解决很多新问题,可能在组合很多情况去解决复杂问题,我们认为这都在做微创新,从两天任务变到了 2 万个,有了十倍的增加。 为了把这两套体系连接起来,发挥更大的作用,我们构建的智能数据目录,相当于每周会有 20% 的员工在高频的使用。 相当于 20% 的员工在去找公司里面有哪些数据可以帮助到他做各种各样业务的问题,目前也在系统性对外进行输出。 另外,敏捷的数据治理,很多时候是数据治好一段时间,然后又坏,怎么能够让它好用起来呢?第一个必须得全面量化,第二个改变思路。 以前的思路是我的数据治理目标数据质量好,我们想数据质量好的本质是什么? 能够把数据用起来,我们认为所有的数据治理目标是让更多人把数据用起来,能够用起来的第一点是量化,数据怎么在被使用。 我们把整个数据体系里面的任何数据存储引擎,数据分析的产品,用户的日志都记录下来。 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |