Python数据可视化:箱线图多种库画法
副标题[/!--empirenews.page--]
概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字。 ![]() 四分位间距(Interquartilerange(IQR))=上分位数(upper quartile)-下分位数(lower quartile) 箱线图分为两部分,分别是箱(box)和须(whisker)。箱(box)用来表示从第一分位到第三分位的数据,须(whisker)用来表示数据的范围。 箱线图从上到下各横线分别表示:数据上限(通常是Q3+1.5IQR),第三分位数(Q3),第二分位数(中位数),第一分位数(Q1),数据下限(通常是Q1-1.5IQR)。有时还有一些圆点,位于数据上下限之外,表示异常值(outliers)。 (注:如果数据上下限特别大,那么whisker将显示数据的最大值和最小值。) ![]() 案例1. 使用pandas自带的函数 使用pandas里的dataframe数据结构存放待显示的数据。如果希望显示的各个数据列表中,数据长度不一致,可以先用Series函数转换为Series数据,再存储到dataframe中,对应index的value值若不存在则为NaN。 下面我们随机生成4组数据,看看他们的箱线图。 【代码】
【效果】 ![]() 上面的箱线图很简单,给出数据后,几行代码就能生成,不过这是简单的箱线图。下面再看看稍微复杂点的。 2. 使用matplotlib库画箱线图 我们上面介绍了使用pandas画箱线图,几句命令就可以了。但是稍微复杂点的可以使用matplotlib库。matplotlib代码稍微复杂点,但是很灵活。细心点同学会发现pandas里面的画图也是基于此库的,下面给你看看pandas里面的源码: ![]() 通过源码可以看到pandas内部也是通过调用matplotlib来画图的。那下面我们自己实现用matplotlib画箱线图。 我们简单模拟一下,男女生从20岁,30岁的花费对比图,使用箱线图来可视化一下。 【代码】
【效果】 ![]() 从上面随机模拟,看出来男生花费赶不上女生吧,尤其是30岁以后,女生摔男生一大截啊。(模拟数据,请勿当真) 仔细看上面的图,感觉还是不太好,既然男女生对比,那是不是要分组,男女生放一块,然后再根据年龄段比较,这样比较才直观。 那我们就稍微改动上面一点点代码,实现男女生箱线图挨得近一点。 (编辑:晋中站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |