【代码】
- import numpy as np
- import matplotlib.pyplot as plt
- fig, ax = plt.subplots() # 子图
- def list_generator(mean, dis, number): # 封装一下这个函数,用来后面生成数据
- return np.random.normal(mean, dis * dis, number) # normal分布,输入的参数是均值、标准差以及生成的数量
-
- # 我们生成四组数据用来做实验,数据量分别为70-100
- # 分别代表男生、女生在20岁和30岁的花费分布
- girl20 = list_generator(1000, 29.2, 70)
- boy20 = list_generator(800, 11.5, 80)
- girl30 = list_generator(3000, 25.1056, 90)
- boy30 = list_generator(1000, 19.0756, 100)
-
-
- data=[girl20,boy20,girl30,boy30,]
- # 用positions参数设置各箱线图的位置
- ax.boxplot(data,positions=[0, 0.6, 3, 3.7,])# 就是后面加了位置
- ax.set_xticklabels(["girl20", "boy20", "girl30", "boy30",]) # 设置x轴刻度标签
- plt.show()
【效果】
这样看一下,是不是男女生根据年龄段分组了呢,稍微比上面好看些,也直观一些。这样既能看出年龄段的对比,又能看出男女生的对比。
同样,如果想要箱线图旋转90°,那么也是在在 boxplot命令里加上参数 vert=False即可。如果想要更多设置,可以基于 boxplot函数参数进行修改,其函数定义如下:
- boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
- positions=None, widths=None, patch_artist=None,
- bootstrap=None, usermedians=None, conf_intervals=None,
- meanline=None, showmeans=None, showcaps=None,
- showbox=None, showfliers=None, boxprops=None,
- labels=None, flierprops=None, medianprops=None,
- meanprops=None, capprops=None, whiskerprops=None,
- manage_xticks=True, autorange=False, zorder=None)
3. 使用seaborn库和matplotlib来画箱线图
Seaborn是基于matplotlib的Python可视化库。 它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物。
函数定义:
- boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
- orient=None, color=None, palette=None, saturation=.75,
- width=.8, dodge=True, fliersize=5, linewidth=None,
- whis=1.5, notch=False, ax=None, **kwargs)
【参数讲解】
- x,y:dataframe中的列名(str)或者矢量数据
- data:dataframe或者数组
- palette:调色板,控制图像的色调
- hue(str):dataframe的列名,按照列名中的值分类形成分类的条形图
- order, hue_order (lists of strings):用于控制条形图的顺序
- orient:"v"|"h" 用于控制图像使水平还是竖直显示(这通常是从输入变量的dtype推断出来的,此参数一般当不传入x、y,只传入data的时候使用)
- fliersize:float,用于指示离群值观察的标记大小
- whis:确定离群值的上下界(IQR超过低和高四分位数的比例),此范围之外的点将被识别为异常值。IQR指的是上下四分位的差值。
- width:float,控制箱型图的宽度
我们还是基于上面男女花费案例来说,不过这里我们把数据进行了整理,做成了数据框dataframe。
【包含的库】
- import pandas as pd
- import numpy as np
- import seaborn as sns
- import matplotlib.pyplot as plt
- # plt.rc("font", family="SimHei", size="15") 避免中文乱码,可不用
(编辑:晋中站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|