加入收藏 | 设为首页 | 会员中心 | 我要投稿 晋中站长网 (https://www.0354zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

[转]文本相似性算法:simhash/minhash/余弦算法

发布时间:2021-01-19 18:42:40 所属栏目:大数据 来源:网络整理
导读:数据挖掘之lsh(局部敏感hash) minhash、simhash 在项目中碰到这样的问题: 互联网用户每天会访问很多的网页,假设两个用户访问过相同的网页,说明两个用户相似,相同的网页越多,用户相似度越高,这就是典型的CF中的user-based推荐算法。 算法的原理很简单

感谢您做的simhash库,感觉会很方便。 有关求二进制中1的个数,其实有各种O(1)的实现。可以参考这个地方:http://stackoverflow.com/a/14682688

simhash 实现的工程项目

  • C++ 版本?simhash
  • Golang 版本?gosimhash

主要是针对中文文档,也就是此项目进行simhash之前同时还进行了分词和关键词的抽取。

对比其他算法

『百度的去重算法』

百度的去重算法最简单,就是直接找出此文章的最长的n句话,做一遍hash签名。n一般取3。 工程实现巨简单,据说准确率和召回率都能到达80%以上。

『shingle算法』

shingle原理略复杂,不细说。 shingle算法我认为过于学院派,对于工程实现不够友好,速度太慢,基本上无法处理海量数据。

『其他算法』

具体看微博上的讨论

参考

  • Similarity estimation techniques from rounding algorithms
  • simhash与Google的网页去重
  • 海量数据相似度计算之simhash和海明距离


来源:http://yanyiwu.com/work/2014/01/30/simhash-shi-xian-xiang-jie.html




实现文本相似度算法(余弦定理)


(编辑:晋中站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读