
- 可以根据自身的环境选择相应版本进行下载,这个有身份验证只能浏览器下载然后再上传到云主机中。
-
- 安装:
-
- #rpm -ivh libcudnn7-7.4.2.24-1.cuda10.0.x86_64.rpm libcudnn7-devel-7.4.2.24-1.cuda10.0.x86_64.rpm libcudnn7-doc-7.4.2.24-1.cuda10.0.x86_64.rpm
-
- 准备中... ################################# [100%]
-
- 正在升级/安装...
-
- 1:libcudnn7-7.4.2.24-1.cuda10.0 ################################# [ 33%]
-
- 2:libcudnn7-devel-7.4.2.24-1.cuda10################################# [ 67%]
-
- 3:libcudnn7-doc-7.4.2.24-1.cuda10.0################################# [100%]
-
- 验证cuDNN:
-
- # cp -r /usr/src/cudnn_samples_v7/ $HOME
-
- # cd $HOME/cudnn_samples_v7/mnistCUDNN
-
- # make clean && make
-
- rm -rf *o
-
- rm -rf mnistCUDNN
-
- /usr/local/cuda/bin/nvcc -ccbin g++ -I/usr/local/cuda/include -IFreeImage/include -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_53,code=compute_53 -o fp16_dev.o -c fp16_dev.cu
-
- g++ -I/usr/local/cuda/include -IFreeImage/include -o fp16_emu.o -c fp16_emu.cpp
-
- g++ -I/usr/local/cuda/include -IFreeImage/include -o mnistCUDNN.o -c mnistCUDNN.cpp
-
- /usr/local/cuda/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_53,code=compute_53 -o mnistCUDNN fp16_dev.o fp16_emu.o mnistCUDNN.o -I/usr/local/cuda/include -IFreeImage/include -LFreeImage/lib/linux/x86_64 -LFreeImage/lib/linux -lcudart -lcublas -lcudnn -lfreeimage -lstdc++ -lm
-
- # ./mnistCUDNN
-
- cudnnGetVersion() : 7402 , CUDNN_VERSION from cudnn.h : 7402 (7.4.2)
-
- Host compiler version : GCC 4.8.5
-
- There are 1 CUDA capable devices on your machine :
-
- device 0 : sms 8 Capabilities 6.1, SmClock 1480.5 Mhz, MemSize (Mb) 5059, MemClock 3504.0 Mhz, Ecc=0, boardGroupID=0
-
- Using device 0
-
- Testing single precision
-
- Loading image data/one_28x28.pgm
-
- Performing forward propagation ...
-
- Testing cudnnGetConvolutionForwardAlgorithm ...
-
- Fastest algorithm is Algo 1
-
- Testing cudnnFindConvolutionForwardAlgorithm ...
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.036864 time requiring 0 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.044032 time requiring 3464 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.053248 time requiring 57600 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.116544 time requiring 207360 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.181248 time requiring 2057744 memory
-
- Resulting weights from Softmax:
-
- 0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
-
- Loading image data/three_28x28.pgm
-
- Performing forward propagation ...
-
- Resulting weights from Softmax:
-
- 0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
-
- Loading image data/five_28x28.pgm
-
- Performing forward propagation ...
-
- Resulting weights from Softmax:
-
- 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006
-
- Result of classification: 1 3 5
-
- Test passed!
-
- Testing half precision (math in single precision)
-
- Loading image data/one_28x28.pgm
-
- Performing forward propagation ...
-
- Testing cudnnGetConvolutionForwardAlgorithm ...
-
- Fastest algorithm is Algo 1
-
- Testing cudnnFindConvolutionForwardAlgorithm ...
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.032896 time requiring 0 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.036448 time requiring 3464 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.044000 time requiring 28800 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.115488 time requiring 207360 memory
-
- ^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.180224 time requiring 2057744 memory
-
- Resulting weights from Softmax:
-
- 0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
-
- Loading image data/three_28x28.pgm
-
- Performing forward propagation ...
-
- Resulting weights from Softmax:
-
- 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
-
- Loading image data/five_28x28.pgm
-
- Performing forward propagation ...
-
- Resulting weights from Softmax:
-
- 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006
-
- Result of classification: 1 3 5
-
- Test passed!
-
- Test passed!且测试过程中无报错,表示测试通过!
3.4安装 TensorFlow
- # pip3 install --upgrade setuptools==30.1.0
-
- # pip3 install tf-nightly-gpu
-
- 验证测试:
-
- 在 Python 交互式 shell 中输入以下几行简短的程序代码:
-
- # python
- import tensorflow as tf
- hello = tf.constant('Hello, TensorFlow!')
- sess = tf.Session()
- print(sess.run(hello))
-
- 如果系统输出以下内容,就说明您可以开始编写 TensorFlow 程序了:
-
- Hello, TensorFlow!
-
- 同时使用nvidia-smi命令可以看到当前显卡的处理任务。
(编辑:晋中站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|